THE ALKENIC UNREACTIVITY OF MONO- AND BI-CYCLIC DERIVATIVES OF 3,6-DIHYDRO-2-(METHYLTHIO)-2*H*-THIOPYRAN *S*,*S*,*S*',*S*'-TETRAOXIDE^{††}

DOLATRAI M. VYAS AND GEORGE W. HAY

Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6 (Canada) (Received November 9th, 1976; accepted for publication in revised form, December 28th, 1976)

ABSTRACT

The inertness of the alkenic bond towards electrophilic additions in 3-exo-cyano-3-(methylthio)-2-thiabicyclo[2.2.1]hept-5-ene S,S,S',S'-tetraoxide (5), 3,6-dihydro-2-(methylthio)-2H-thiopyran-2-carbonitrile S,S,S',S'-tetraoxide (3), and 2-(acetamidomethyl)-3,6-dihydro-2-(methylthio)-2H-thiopyran S,S,S',S'-tetraoxide (4) is attributed to the "supra-annular effect" and field effects. Conformational analysis of a pentadeuterated derivative of 4 (10) is reported. On the basis of the 220-MHz ¹H n.m.r.-spectral data of 10, the compound was concluded to adopt the $^{0}H_{2}$ conformation in chloroform solution.

INTRODUCTION

As one facet of the present interest in replacement of the sugar ring-oxygen atom by other heteroatoms, a study of methods whereby sugars having sulfur in the ring may be synthesized via Diels-Alder reactions with methyl cyanodithioformate has been initiated in this laboratory. Earlier papers in this series have described the cis-hydroxylation, with osmium tetraoxide, of Diels-Alder adducts obtained by exploitation of the dienophilic properties of methyl cyanodithioformate. Thus, cis-hydroxylation of the 1,4-cycloaddition products from the reaction of methyl cyanodithioformate with 1-methoxy-1,3-butadiene and with cyclopentadiene afforded two original types of carbohydrates with sulfur in the ring, namely methyl 3-O-methyl-2,6-dithio-α-DL-arabino-2-hexulopyranosidononitrile (1) and methyl 3-deoxy-3,6-C-methylene-2,6-dithio-α-DL-talo-hex-2-ulopyranosidononitrile (2), respectively.

Direct trans-hydroxylation, via epoxidation of the alkenic bond of the Diels-Alder product with peroxy acids, was not feasible because of the susceptibility to oxidation of the (highly nucleophilic) sulfur atoms³. The desired transformation to afford 1,3-dideoxy- and 1-amino-3,6-C-methylene-2,6-dithio-hex-2-ulopyranosides

^{*}Dedicated to the memory of Professor J. K. N. Jones, F.R.S.

[†]Studies on the synthesis of novel carbohydrates having sulfur in the ring, Part IV. For part III, see ref. 1.

was assumed to be achievable by epoxidation of the fully S-oxidized adduct 3b, oxirane ring-opening, and reduction of the sulfonyl groups4 with lithium aluminum hydride. Surprisingly, it was observed^{1,5} that treatment of each of 3,6-dihydro-2-(methylthio)-2H-thiopyran-2-carbonitrile, 2-(acetamidomethyl)-3,6-dihydro-2-(methylthio)-2H-thiopyran, and 3-exo-cyano-3-(methylthio)-2-thiabicyclo[2.2.1]hept-5-ene, with an excess of m-chloroperoxybenzoic acid in dichloromethane afforded only the corresponding S,S,S',S'-tetraoxide (3, 4, and 5), with no trace of epoxidation product. Moreover, 3 was totally inert to Milas' reagent⁶, peroxyformic acid, trifluoroperoxyacetic acid, or bromine in carbon tetrachloride. Such inertness of an alkenic bond to addition reactions is striking, especially in the monocyclic systems, as the carbon-carbon double bonds in unsaturated five-7 and six-membered 3a,8, heterocyclic sulfones undergo facile additions. However, Johnson et al.3b observed that the alkenic bond in 3.3-dichloro-2-thiabicyclos2.2.1]hept-5-ene S.S-dioxide was completely unreactive in electrophilic additions. In addition, Raasch has reported that bromination of 3-hexafluoroisopropylidene-2-thiabicyclo[2,2,1]hept-5-ene S,Sdioxide was barely perceptible until irradiation was used to induce a free-radical reaction.

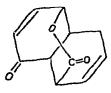
5

This paper discusses the unreactivity of the *endo*-cyclic double bond in both rigid bicyclic, and conformationally mobile, monocyclic sulfur heterocycles, in terms of electrostatic (field) effects ¹⁰, inductive effects ^{85,10}, and the "supra-annular effect" ¹¹. The preparation and ¹H n.m.r.-spectral analysis of 3-exo-cyano-3-(methylthio)-2-thiabicyclo[2.2.1]hept-5-ene S,S,S',S'-tetraoxide (5) are reported, as well as conformational studies on one deuterated derivative.

RESULTS AND DISCUSSION

Treatment of 3-exo-cyano-3-(methylthio)-2-thiabicyclo[2.2.1]hept-5-ene² (6) with an excess of m-chloroperoxybenzoic acid in dichloromethane for 48 h at room

TABLE I


1H n.m.r. chemical shift (7) data for derivatives of 2-thianorbornene

Compound	Proton						
		i	4	5	6	7	CH ₃
7 2S 5 4 3 CN SMe	6 (ref. 2)	5.61m	6.15m	3.50q	3.97q	7.93m	7.64s
SO ₂ CN SO ₂ Me	5	5.62m	5.92m	3.28q	3.67q	7.30m	7.00s
S Cl	7 (refs. 3b, 9)	5.66m	6.07m	3.82m	3.37q	7.95AB	
So ₂	8 (ref. 3b)	5.74m	6.45m	3.55m	3.55m	7.48	

temperature afforded only 5, as a colorless, crystalline compound. The elemental analysis, and i.r. and 1H n.m.r. spectra, were in agreement with the structure. The presence of the alkenic bond was established from the 1H n.m.r. spectrum on the basis of two one-proton signals (at τ 3.28 and 3.67), which were attributed to the resonance of vinyl protons.

Complete n.m.r.-spectral analysis (see Table I) was achieved by considering the chemical-shift data of other relevant 2-thianorbornene derivatives [7 and 8 (see ref. 3b)] and by double-resonance experiments. Thus, considering the chemical shifts of the H-1 and H-4 protons reported for 6 (ref. 2), 7, and 8, the signals at τ 5.62 and 5.92 in the ¹H n.m.r. spectrum of 5 were similarly assigned to H-1 and H-4, respectively. This trend in the H-1 and H-4 chemical shifts in all four compounds is consistent with that observed in the studies by Fraser et al. ¹², and by Boerma et al. ¹³, on other bicyclic, sulfur heterocyles. Finally, assignments of the signals at τ 3.28 and 3.67 to the H-5 and H-6 vinyl protons, respectively, were made on the results of selective irradiation of the H-1 and H-4 signal frequencies.

Attempts to epoxidize the ring double-bond in 5 with m-chloroperoxybenzoic acid under more vigorous conditions (boiling benzene) did not afford any epoxide. Under similar conditions, Johnson $et\ al.^{3b}$ obtained an epoxide of 3,3-dichloro-2-thiabicyclo[2.2.1]hept-5-ene S,S-dioxide (8) in 28% yield. The double bond of other S,S-dioxide derivatives of 2-thianorbornenes also displayed reactivity to electrophiles⁹. The total unreactivity of the alkenic bond of 5 towards electrophilic addition, under the conditions cited, may be attributed to deactivation by the positively-charged sulfonyl-sulfur atoms 10b of both the endo- and ring-sulfonyl groups. The endo-(methylsulfonyl)-sulfur atom is suitably situated with respect to the double bond so as to impart a "supra-annular effect" with concomitant deactivation of the alkenic bond arising from partial overlapping of the electron-deficient, π -orbital of the S-O group and the π -orbital of the double bond. Woodward and co-workers 14 attributed to the same effect the unreactivity towards bromination of the non-conjugated double bond in the rigid lactone, 9.

9

The original application of the "supra-annular effect" to explain the unreactivity of the alkenic bond in some 4-substituted cyclohexenes ^{1 1a} was subsequently disproved by ¹H n.m.r. studies of conformation ^{1 1b}. The inertness to electrophilic attack of the alkenic bond in 3 and 4 as compared to that in "sulfolene" (11) or 3,6-dihydro-2*H*-thiopyran *S,S*-dioxide⁸ (12) could be attributed, in part, to the in-

fluence of the exocyclic, sulfonyl group. The adjacent polar bonds¹⁵ in 3 and 4 would impose a special stereochemical requirement that could be a significant factor in controlling the conformational equilibrium in solution. For solutions of cyclohexene, the preponderance of the half-chair conformation is well established¹⁶, but for unsaturated sulfur heterocyclic compounds it is much less certain what is the favored conformation. It has been suggested¹⁷ that 3,6-dihydro-2*H*-thiopyran exists primarily in a boat conformation, and that conformation has been established by X-ray crystallographic measurements on a number of other unsaturated, six-membered sulfur heterocycles¹⁸. Nevertheless, it was essential to determine the favored conformation of each of 3 and 4 in solution before any explanation of the cause of unreactivity of the ring double-bond could be proposed. This conformational study was accomplished by ¹H n.m.r. spectroscopy.

The 60-MHz 1 H n.m.r.-spectral data for 3 and 4 have been reported 5 , but coupling constants were unavailable because of the incomplete resolution in those spectra. This information was obtained from the well-resolved 220-MHz 1 H n.m.r. spectrum (without the methyl singlet of the acetamido group) of the pentadeuterio derivative 5 (10) (see Fig. 1). The vinylic (H-4, H-5), and allylic (H-3, H-3') proton signals, centered at τ 5.74 and 3.04, respectively, were analysed as an ABCD spin system with the LAOCN-4A program 19 . The calculated chemical-shifts and coupling constants of the ring protons are documented in Table II.

For conformational studies, the Karplus equation 20 could not be employed because of the unsaturation of the compounds. Therefore the empirical Garbisch 21 equation, which is applicable to unsaturated systems, was employed to obtain an estimate of the angle between the ring C-H bonds and the plane of the ring double-bond in 10 from the vicinal coupling-constants $J_{3,4}$ (3.6 Hz) and $J_{3',4}$ (4.6 Hz). These values indicate torsion angles of approximately 60 and 45°, respectively, between the plane of the double bond and H-3 and H-3°. This analysis implies that, in chloroform, compound 10 exists preponderantly in a slightly distorted, half-chair conformation. Drieding models of cyclohexene suggested that the torsion angles between the quasi-equatorial (qe) and quasi-axial (qa) C-H bonds and the plane of the ring double bond were close to 45 and 75°, respectively, in the stable half-chair conformer 22 . The corresponding bonds have been reported to subtend angles of 30 and 90° in some unsaturated carbohydrates 23 . Thus, the spectral analysis of 10 leads to the conclusion that, in chloroform solution, 3 and 4 favor the half-chair confor-

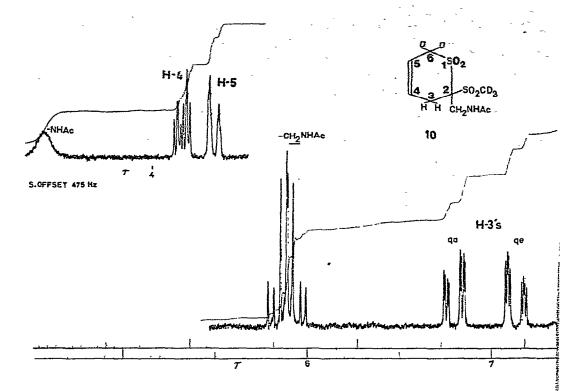


Fig. 1. Partial 220-MHz ¹H n.m.r. spectrum of compound 10.

TABLE II

CALCULATED* 220 MHz H1 N.M.R. CHEMICAL-SHIFT (t) AND COUPLING-CONSTANT (Hz) DATA FOR RING PROTONS OF COMPOUND 10

Proton	Chemical shift 2.88	Coupling constants (H2)				
H-3		J _{3,3} , -19.3 J _{3,4} 3.6 (60°)				
H-3'	3.20	$J_{3,5} = -2.3$ $J_{3',4} = 4.6 (45^\circ)$ $J_{3',5} = -1.6$				
H-4	5.82	$J_{4,5}$ 10.7				
H-5	5.66					

^{*}LAOCN-4A (ref. 19). †The values in parentheses denote the torsion angles corresponding to the coupling constant, as obtained by employing the Garbich equation: $J_{vicinst} = 6.6\cos^2\theta + 2.6\sin^2\theta (0^\circ \le \theta \le 90^\circ)$

mation and that the conformational equilibria in solution may be represented as shown (3, R = CN; 4, $R = CH_2NHAc$).

On the basis of the following considerations, the preponderant conformer of 3 in solution was concluded to be ${}^{0}H_{2}$: (a) the ${}^{0}H_{2}$ conformation would locate the equatorial cyano group in a stabilizing configuration, as the linear C=N bond would lie on, or close to, the bisector of the ring O-S-O angle. Such an arrangement of adjacent polar bonds has been observed²⁴ in the crystalline α -bromosulfone 13. Moreover, in 1,1,2-trihalocyclohexanes²⁵, the equatorial conformer (14) is favored over its axial counterpart. (b) The axially disposed, sulfonyl group would also be in a

stabilizing disposition; (c) in contrast, an equatorial sulfonyl group would bring about electrostatic repulsion between the negative, sulfonyl-oxygen atoms, a situation parallel to the well-known "rabbit ear-effect" postulated by Eliel²⁶. (d) On the basis of a recent study²⁷ of the conformational equilibria of 1,3-dioxanes having polar substituents at C-5, it is evident that 3 in the $^{0}H_{2}$ conformation would experience still further stabilization from an electrostatic attraction between the positively charged, axial sulfur-atom and the somewhat anionic C-6 atom. With these 3,6-dihydro-2 H_{1} -thiopyran derivatives, unlike the case of the 4-substituted cyclohexenes, the evidence argues for the involvement of the "supra-annular effect", together with the aforementioned factors, producing a strong preference in solutions of 3 and 4 for the $^{0}H_{2}$ conformation, in which there occurs a dramatic deactivation of the ring double-bond towards electrophilic attack.

Whereas studies on pent-2-enofuranoses²⁸ and hex-2-enopyranoses²⁹ indicated normal reactivity of the double bond to the standard hydroxylating reagents, some examples of unreactivity of unsaturated carbohydrates toward addition of pseudo-halogens have been observed³⁰. This lack of reactivity has been attributed to inductive electron-withdrawal by the anomeric centre³¹. However, all electron-withdrawing groups in 3 and 4 are separated from the ring double-bond by at least two σ -bonds. Comparison of the alkenic reactivities of 11 (ref. 7) and 12 (ref. 8) with those of 3 and 4 demonstrates that the inertness is not attributable in any significant measure to an inductive withdrawal of π -electrons. Thus, in the case of the mono- and bi-cyclic systems just described, the deactivation of the ring double-bond results primarily from non-inductive, non-conjugative effects that are maximized in the favored conformation. With compound 5, the electrostatic (field) effects of the sulfonyl group, in the sense discussed by Kwart et al. ^{10b} in their study of the unreactivity of the double bonds in substituted cyclohexenes and norbornenes, cannot be completely excluded.

EXPERIMENTAL*

3-exo-Cyano-3-(methylthio)-2-thiabicyclo[2.2.1]hept-5-ene S,S,S',S'-tetraoxide (5). — m-Chloroperoxybenzoic acid (21.0 g, 0.11 mol) in 80 ml of anhydrous dichloromethane was added to 3.0 g (160 mmol) of 6 in 25 ml of anhydrous dichloromethane at ice-bath temperature. The mixture was kept for 48 h at room temperature, whereupon it was washed sequentially with saturated aqueous sodium hydrogensulfite, saturated aqueous sodium hydrogencarbonate, and water. Evaporation of the solvent afforded 4.0 g (97.5%) of white solid which, on recrystallization from 95% ethanol, gave colorless platelets; m.p. 132–133°; v_{max} (KBr) 3030 (C=CH), 2222 (C=N), 1333 and 1136 cm⁻¹ (SO₂); n.m.r. data in acetone- d_6 (see Table I).

Anal. Calc. for C₈H₉NO₄S₂: C, 38.90; H, 3.64. Found: C, 39.30; H, 3.66.

ACKNOWLEDGMENTS

The authors are grateful to the National Research Council of Canada for financial support through Operating Grant A1921. We thank Mr. B.M. Pinto for ¹H-n.m.r.-spectral analysis employing the LAOCN-4A program.

REFERENCES

- 1 D. M. VYAS AND G. W. HAY, Can. J. Chem., 53 (1975) 1362-1366.
- 2 D. M. VYAS AND G. W. HAY, Can. J. Chem., 49 (1971) 3755-3758.
- 3 (a) E. Molenar and J. Strating, Rec. Trav. Chim., 86 (1967) 1047-1056; (b) C. R. Johnson, J. E. Keiser, and J. C. Sharp, J. Org. Chem., 34 (1969) 860-864; (c) A. Ohno, Y. Ohnishi, and G. Tsuchinashi, Tetrahedron, 25 (1969) 871-876; (d) H. J. Reich and E. Trend, J. Org. Chem., 38 (1973) 2637-2640; (e) P. Y. Johnson, E. Koza, and R. E. Kohrman, ibid., 38 (1973) 2967-2971.

^{*}For general experimental procedures see reference 1.

- 4 F. G. BORDWELL AND W. H. MCKELLIN, J. Am. Chem. Soc., 73 (1951) 2251-2253; J. N. GARDNER, S. KAISER, A. KRUBINER, AND H. LUCAS, Can. J. Chem., 51 (1973) 1419-1421.
- 5 D. M. VYAS AND G. W. HAY, J. Chem. Soc. Perkin I, (1975) 180-186; D. M. VYAS, Ph.D. Thesis, Queen's University, 1972.
- 6 N. A. MILAS AND S. SUSSMAN, J. Am. Chem. Soc., 58 (1936) 1302-1304.
- W. R. SORENSON, J. Org. Chem., 24 (1959) 1796-1798; F. ELLIS, P. G. SAMMES, M. B. HORNHOUSE, AND S. NEIDLE, J. Chem. Soc. Perkin I, (1972) 1560-1563; K. Ohba, K. Mori, T. KITAHAFA, S. KITAMURA, AND M. MATSUI, Agr. Biol., Chem., 38 (1974) 1679-1683; R. C. KRUG AND E. E. BOSWELL, J. Heterocyclic Chem., 4 (1967) 309-310.
- (a) E. A. Fehnel and P. A. Lackey, J. Am. Chem. Soc., 73 (1951) 2473-2479;
 (b) E. A. Fehnel, J. Am. Chem. Soc., 74 (1952) 1569-1574.
- 9 M. S. RAASCH, J. Org. Chem., 40 (1975) 161-171.
- 10 (a) K. KWART AND R. MILLER, J. Am. Chem. Soc., 83 (1961) 4552-4559; (b) C. Y. MEYERS, Tetrahedron Lett., (1962) 1125-1132.
- (a) G. P. KUGATOVA AND Y. A. OVCHINNIKOV, Tetrahedron, 18 (1962) 697-703; (b) N. S. ZEFIROV,
 V. N. CHEKULAEVA, AND A. I. BELOZEROV, ibid., 25 (1969) 1997-2003; (c) G. E. McCasland,
 S. FURUTA, AND L. J. DURHAM, J. Org. Chem., 33 (1968) 2835-2841.
- 12 R. R. FRASER, T. DURST, M. R. McCLORY, R. VIAU, AND Y. Y. WIGFIELD, Int. J. Sulfur Chem., A, 1 (1971) 133-142.
- 13 J. A. Boerma, N. H. Nilsson, and A. Senning, Tetrahedron, 30 (1974) 2735-2740.
- 14 R. B. WOODWARD, F. E. BADER, H. BICKEL, A. J. FREY, AND R. W. KIERSTEAD, Tetrahedron, 2 (1958) 1-57.
- 15 (a) S. Wolfe, A. Rauk, L. M. Tel, and I. G. Csizmadia, J. Chem. Soc. Perkin I, (1971) 136-145; (b) R. U. Lemieux, in P. de Mayo (Ed.), Molecular Rearrangements, Interscience, New York 1964, 709.
- 16 F. ANET AND M. HAQ, J. Am. Chem. Soc., 87 (1965) 3147-3150.
- 17 C. A. R. BAXTER AND D. A. WHITING, J. Chem. Soc. (C), (1968) 1174-1178.
- 18 D. A. PULMAN AND D. A. WHITING, Chem. Commun., (1971) 831-833.
- 19 J. A. Musso, Nuclear Magnetic Resonance Spectra Analysis by Least Squares With Magnetic Equivalence Factoring, Self Assignment, and Plots, Program 232, Quantum Chemistry Program Exchange, Indiana University, 1973.
- 20 M. KARPLUS, J. Chem. Phys., 30 (1959) 11-15.
- 21 E. W. GARBISCH, J. Am. Chem. Soc., 86 (1964) 5561-5564.
- 22 E. L. ELIEL, N. L. ALLINGER, S. J. ANGYAL, AND G. A. MORRISON, Conformational Analysis, Wiley, New York, 1965, 111.
- 23 R. J. FERRIER AND G. H. SANKEY, J. Chem. Soc. (C), (1966) 2345-2349; K. BOCK AND C. PEDERSEN, Acta Chem. Scand., 25 (1971) 1021-1030.
- 24 F. G. BORDWELL, B. B. JARVIS, AND P. W. R. CORFIELD, J. Am. Chem. Soc., 90 (1968) 5298-5299.
- 25 H. R. BUYS, C. ALTONA, AND E. HAVINGA, Rec. Trav. Chim., 86 (1967) 1007-1017.
- 26 E. L. Eliel, Svensk. Kem. Tidskr., 81 (1969) 22-27.
- 27 M. K. KALOUSTIAN, N. DENNIS, S. MAGER, S. A. EVANS, F. ALCUDIA, AND E. L. ELIEL, J. Am. Chem. Soc., 98 (1976) 956-965.
- 28 N. J. LEONARD, F. C. SCIAVOLINO, AND V. NAIR, J. Org. Chem., 33 (1968) 3169-3174.
- 29 A. BANASEK AND A. ZAMOJSKI, Carbohydr. Res., 25 (1972) 453-463; R. C. HOCKETT, A. C. SAPP, AND J. R. MILLMAN, J. Am. Chem. Soc., 63 (1941) 2051-2053.
- 30 W. A. SZAREK, D. G. LANCE, AND R. L. BEACH, Carbohydr. Res., 13 (1970) 75-81; J. S. BRIMA-COMBE, J. G. H. BRYAN, T. A. HAMOR, AND L. C. N. TUCKER, Chem. Commun., (1968) 1401-1402.
- 31 R. G. S. RITCHIE AND W. A. SZAREK, Carbohydr. Res., 18 (1971) 443-445.